TOSHIBA Photocoupler GaAs Ired & Photo-Transistor

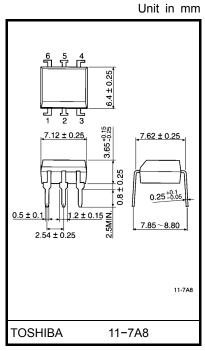
TLP331,TLP332

Office Machine
Household Use Equipment
Programmable Controllers
AC / DC-Input Module
Telecommunication

The TOSHIBA TLP331 and TLP332 consists of a gallium arsenide infrared emitting diode optically coupled to a photo–transistor in a six lead plastic DIP package.

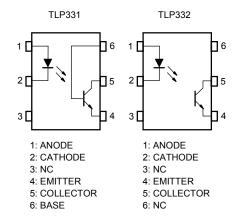
This photocoupler provides the unique feature of high current transfer ratio at both low output voltage and low input current. This makes it ideal for use in low power logic circuits, telecommunications equipment and portable electronics isolation applications.

TLP332 is no-base internal connection for high-EMI environments.


- Collector-emitter voltage: 55V (min.)
- Isolation voltage: 5000Vrms (min.)
- UL recognized: UL1577, file no. E67349
- Current transfer ratio

Classi– fication	Curr	Marking		
	Ta =	25°C	Ta = -25~75°C	Of
(*)	$I_F = 1mA$ $V_{CE} = 0.5V$	$I_F = 0.5 \text{mA}$	I _F = 1mA	Classi-
()	$V_{CE} = 0.5V$	V _{CE} = 1.5V	$V_{CE} = 0.5V$	Fication
Rank BV	200%	100%	100%	BV
Standard	100%	50%	50%	BV, blank

(*) Ex. Standard: TLP331 Rank BV: TLP331(BV)


(Note) Application type name for certification test, please use standard product type name, i.e.

TLP331(BV): TLP331

Weight: 0.4 g

Pin Configurations (top view)

Absolute Maximum Ratings (Ta = 25°C)

	Characteristic		Symbol	Rating	Unit
	Forward current		lF	50	mA
	Forward current derating (Ta ≥ 39°C)		ΔI _F /°C	-0.7	mA / °C
LED	Peak forward current (100µs pulse, 100pps)		IFP	1	Α
	Reverse Voltage		V _R	5	٧
	Junction temperature		Tj	125	°C
	Collector-emitter voltage		V _{CEO}	55	٧
	Collector-base voltage (TLP331)		V _{CBO}	80	V
	Emitter–collector voltage		V _{ECO}	7	V
Detector	Emitter-base voltage (TLP331)		V _{EBO}	7	٧
Dete	Collector current		IC	50	mA
	Power dissipation		PC	150	mW
	Power dissipation derating (Ta ≥ 25°C)		ΔP _C / °C	-1.5	mW / °C
	Junction temperature		Tj	125	°C
Stor	age temperature range		T _{stg}	-55~125	°C
Ope	rating temperature range		T _{opr}	-55~100	°C
Lea	d soldering temperature (10s)		T _{sol}	260	°C
Tota	al package power dissipation		P _T	250	mW
Tota	al package power dissipation derating (Ta≥25°C)		P _T /°C	-2.5	mW / °C
Isola	ation voltage (AC, 1min., RH ≤ 60%)	(Note 1)	BVS	5000	Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

(Note 1) Device considered a two terminal device: Pins 1, 2 and 3 shorted together and pins 4, 5 and 6 shorted together.

Recommended Operating Conditions

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	V _{CC}	_	5	25	V
Forward current	lF	_	1.6	25	mA
Collector current	IC	_	1	10	mA
Operating temperature	T _{opr}	-25	_	75	°C

Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the device. Additionally, each item is an independent guideline respectively. In developing designs using this product, please confirm specified characteristics shown in this document.

Individual Electrical Characteristics (Ta = 25°C)

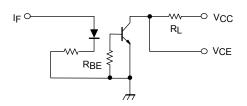
	Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
	Forward voltage	V _F	I _F = 10mA	1.0	1.15	1.3	V
LED	Reverse current	I _R	V _R = 5V	_	_	10	μA
	Capacitance	C _T	V = 0, f = 1MHz	_	30	_	pF
	Collector–emitter breakdown voltage	V _{(BR)CEO}	I _C = 0.5mA	55	_	-	V
	Emitter–collector breakdown voltage	V _{(BR)ECO}	I _E = 0.1mA	7	_	_	V
	Collector-base breakdown voltage (TLP331)	V _{(BR)CBO}	I _C = 0.1mA	80	_	-	V
	Emitter-base breakdown voltage (TLP331)	V _{(BR)EBO}	I _E = 0.1mA	7	_	_	V
Detector		lana	V _{CE} = 24V	_	10	100	nA
Det	Collector dark current	ICEO	V _{CE} = 24V, Ta = 85°C	_	2	50	μΑ
	Collector dark current (TLP331)	ICER	V_{CE} = 24V, Ta = 85°C R _{BE} = 1M Ω	_	0.5	10	μΑ
	Collector dark current (TLP331)	I _{CBO}	V _{CB} = 10V	_	0.1	_	nA
	DC forward current gain (TLP331)	h _{FE}	V _{CE} = 5V, I _C = 0.5mA	_	1000	_	_
	Capacitance (collector to emitter)	C _{CE}	V = 0 , f = 1MHz	_	12	_	pF

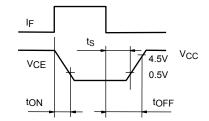
Coupled Electrical Characteristics (Ta = 25°C)

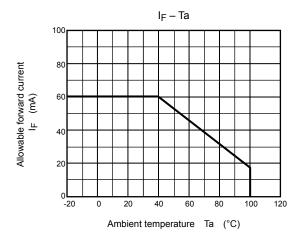
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Current transfer ratio	Ic / I _E	I _F = 1mA, V _{CE} = 0.5V Rank BV	100	_	1200	. %
Current transfer fatio	10714		200	_	1200	
Low input CTR	lo/le#	I _F = 0.5mA, V _{CE} = 1.5V	50	_	_	%
Low Input CTR	I _C / I _{F(low)}	Rank BV	100	_	_	
Base photo-current (TLP331)	I _{PB}	I _F = 1mA, V _{CB} = 5V	_	10	_	μΑ
Collector–emitter saturation voltage		I _C = 0.5mA I _F = 1mA	_	_	0.4	
	V _{CE(sat)}	I _C = 1mA I _F = 1mA	_	0.2	_	V
		Rank BV	_	_	0.4	

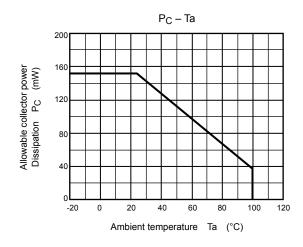
Coupled Electrical Characteristics (Ta = 25~75°C)

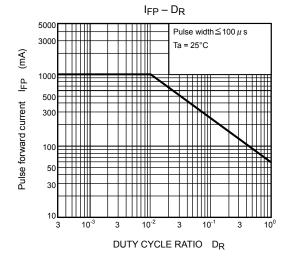
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Current transfer ratio	Ic / I _E	I _F = 1mA, V _{CE} = 0.5V	50	1	ı	%
	1C / 1F	Rank BV	100	-	_	70
Low input CTR	la / l= » .	I _F = 0.5mA, V _{CE} = 1.5V	-	50	_	%
	I _C / I _{F(low)}	Rank BV	_	100	_	/0

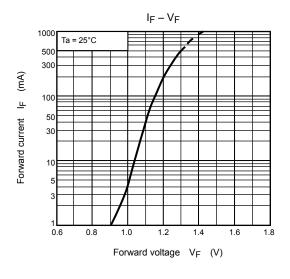

Isolation Characteristics (Ta = 25°C)

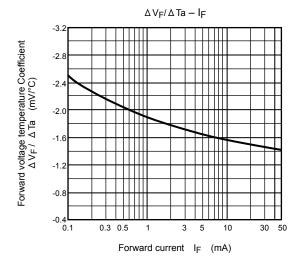

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Capacitance (input to output)	CS	V _S = 0, f = 1MHz	_	8.0	_	pF
Isolation resistance	R _S	V = 500V	5×10 ¹⁰	10 ¹⁴	_	Ω
Isolation voltage		AC, 1 minute	5000	_	_	Vrms
	BV_S	AC, 1 second, in oil	_	10000	_	VIIIIS
		DC, 1 minute, in oil	_	10000		Vdc

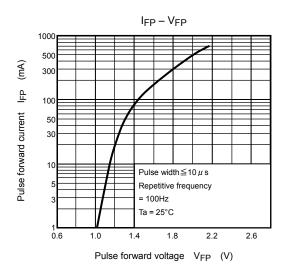

Switching Characteristics (Ta = 25°C)

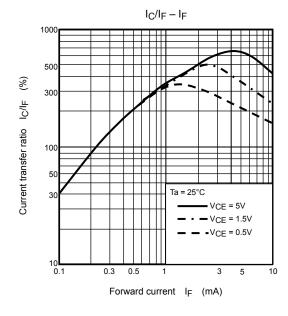

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Rise time	t _r		_	8	_	
Fall time	t _f	V _{CC} = 10V	_	8	_	
Turn-on time	t _{on}	$I_C = 2mA$ $R_L = 100\Omega$	_	10	_	μs
Turn-off time	t _{off}		_	8	_	
Turn-on time	toN	R_L = 4.7k Ω (Fig.1) . R_{BE} = OPEN V_{CC} = 5V, I_F = 1.6mA	_	10	_	
Storage time	ts		_	50	_	μs
Turn-off time	toff		_	300	_	
Turn-on time	toN	$R_L = 4.7 k\Omega$ (Fig.1) . $R_{BE} = 470 k\Omega$ (TLP331) $V_{CC} = 5 V$, $I_F = 1.6 mA$	_	12	_	
Storage time	ts		_	30	_	μs
Turn-off time	toff		_	100	_	

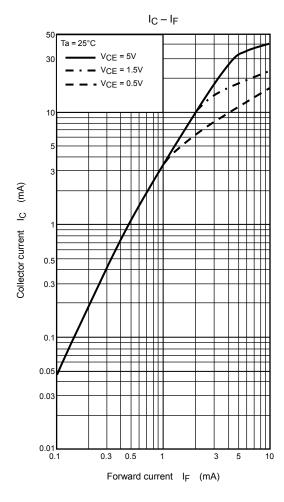

Fig. 1 Switching time test circuit

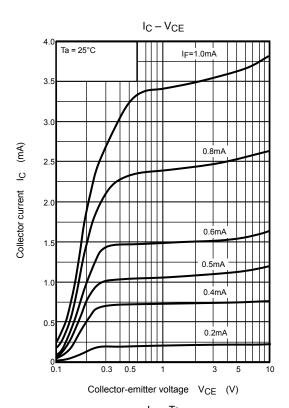


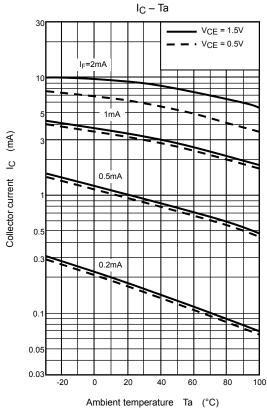


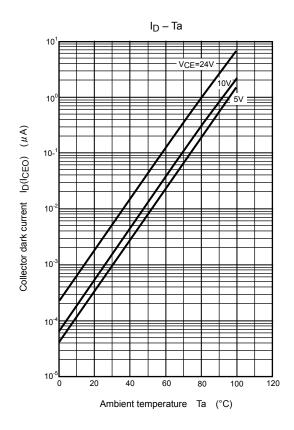


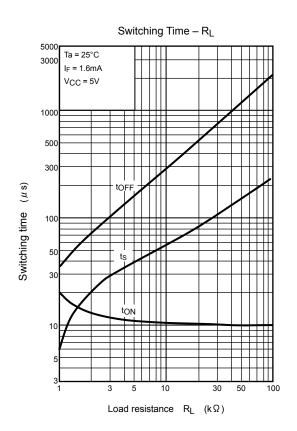












7

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.